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We study the dual integral equations related to the Kontorovich-Lebedev integ- 
ral transforms arising in the course of solution of the problems of mathematical 

physics, in particular of the mixed boundary value problems for the wedgeshaped 

regions. We show that the solutions of these equations can be expressed in quad- 
ratures, using the auxilliary functions satisfying the integral Fredholm equation 

of second kind with a symmetric kernel. 

At present, the dual equations investigated in most detail are those connected 

with the Fourier and Hankel integral transforms. The results obtained and their 

applications are given in [ 1 - 31. A large number of papers also deal with the 

theory and applications of the dual integral equations connected with the Mehler- 
Fock integral transform and its generalizations [4 - 111. 

The dual integral transforms considered in the present paper belong to a more 

complex class than those listed above, and so far, no effective solution has been 
obtained for them. The only relevant results known to the authors are those in 

[12, 131. In [12] a method of solving the equations (1.2) is given for a single 
particular value of the parameter r = n/2, while in [13] the dual equations of 
the type under consideration are reduced to a solution of an infinite system of 
linear algebraic equations. 

1. Formulation of the problem, We consider the dual integral equations 
arizing in connection with the application of the Kontorovich-Lebedev transform to sol- 

ving the mixed boundary value problems for wedge-shaped regions. The equations have 
either the form of (1. l), or of (1.2) 

cv 

s 
'M(t)~(~$Ki,(hr)dt = rg(r), 0 <r<a (1.1) 
0 

co 

s * M (7) Ki, (Rr) dz = f(r), a<r<cc 

I ’ M (‘6) &, (W ch = f (r), o < r < a 
0 

co 

s 'M(z)o(~)K~~(hr)ch = rg(r), a<r<m 
0 

(1.2) 

Here (r cp z) is the system of cylindrical coordinates the z -axis of which coincides with 

the edge of the wedge (0 < r < >o, - y < cp < y, - -X <z < m), Ki, (h r) isthe 
Macdonald function with the imaginary index, f (r) and g (r) are given functions and 
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CO (t) is the weight function defined by the following expressions: 

o (z) = ‘t th yz, o (r) = r cth yr (1.3) 

with one or the other expression used according to whether the boundary value problem 

is even or odd with respect to the variable cp. The parameter h is assumed to be real 
and positive. 

2. Certain discontinuous fntegtrla containing the product, of 
cylindrical functlonc, The technique of solving the dual integral equations is 
based on the use of discontinuous integrals the form of which is determined by the ker- 
nel of the integral transform. In the case of (1.1) and (1.2) these integrals have the 

form of (2. l), (2.2) (2.3) and (2.4), respectively, 

sh TCT X-(At, in) Kir (Ax) dr = 

I 

0, r<t 

e-h(r-t) 
r>t (2.3) 

I/h(r) ’ 

where 

3t- (As, in) ds&, (hr) & :z 

0 0 

I 
re-w-‘) 

v/h(t 
+ I/i%D(V-k(t -r)), r<t 

0 r>’ 
I 

x+ (ht, if) = 
K */ztis 04 + K,,,+ (it) 

2 

x- (At, iz) = 
K l/r+is (At) - Ky.,_i_ (ht ) 

2i 

exp (-- s2) ds 

(2.4) 

Formulas (2.1) - (2.4) appear to be novel. The formulas (2.2) - (2.4) can be proved 

by expanding their right-hand sides into the Kontorovich-Lebedev integral ~143 

f(r) = $5 z sh ZTGZ&+ (hr) dz m f (P) 
s 

?;-Kir(hp)dp, O<r<m (2.5) 

0 0 
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The validity of (2, I) can be established in the analogous manner using the expansion 

f(r) = $i z sh no&, (hr) dz -$$$ 
r b 

+ CL 6) 
0 

i f (P) - ito) e- ” Ki, (Q) dp] 

0 o<r<m 

which generalizes the formula (2.5) to the case when f (r) tends to a limit different 

from zero when r -+ 0 . 
The expressions (2.1) - (2.4) obtained above play the same part in the theory of Eqs. 

(1.1) and (1.2) as the discontinuous Sonin integrals for the integral equations connected 

with the Hankef transform and the Mehler integrals for the equations connected with the 
Mehler -Fock transform, 

3, Solutfon of ths dual intsgrrf squettonr (1,1), In the course of 
solving Eqs. (5.3) we can assume the function 6 (r) = 0 without loss of generality. In 
fact, using the substitution n. 

M(t)=N(z)+P(T), P(z)=-g S\g(r)K&)dr 
;, 

we transform the equations in question into equations of the same form in N (T), the 

right-hand sides of which, by virtue of the theorem of the expansion (2.5), are 
m 

0 

Thus, it is suf~cient to investigate Eq. (1‘1) for the case g (r) = 0 and this is assumed 
henceforth. 

We shall seek a solution of these equations in the form 
00 

M(z) = * *s $I (t) x+ (ht, iT) tit 
a 

(3.1) 

where cp (t) is a function continuous with its first derivative in the interval [a, CX) and 
tending to zero as t -+ 00. 

Integrating by parts we obtain a 

(3.2) 

Substituting (3.2) into the first equation of (1.1) (with (g (r) = 0) and using Eq. (2.2)‘ 

we find that the equation in question is satisfied identically. The substitution of (3.1) 
into the second equation of (1.1) yields the integral Fredholm equation of the first kind 

In the case when w (z) is given by (1.3), Eq. (3.3) can be transformed into an integral 
Fredholm equation of the second kind. 

Let us assume the definiteness that o (r) = t th@c. Then 
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and by virtue of (2.1). Eq. (3.3) becomes 
m 

a 

e-h(t-T) 
’ cp (4 - vk (t _ r) dt = F (r), a < r < m GL 4) 
r 

Using the Abel inversion formulas we obtain 

j‘%+ d y 
‘p (t) = - 7 - 

d7t Q=)yrr_t i 
e--&r dr 

i 

Use of the relation 
e&t d 2 ebhrK. (Air) 

-mz 

) 

v& dr==x+(ht,iz) 

obtained by inverting (2.2) and differentiating with respect to t , now leads to the in- 
tegral Fredholm equation of the second kind with a symmetric kernel 

cpw= --n_ -g\ 
VW ‘p &f(r) dr dD 

; y’-r-1 
- “$1 qQs)K(s, Qds, abt<cQ (3,5) 

a 

K ($, t) == g 1 sh (rh-$ a SC* (hs, iz) x+ (ht, 7%) dz, 0 < r d 3% (3.6) 

In a similar manner ke obtain the following integral equations for o (z) = z cth ye : 

y’h”” d m evhrf (r) 
cp(t)=.--y- - c dt j I/r--t 

(3.7) 

ch yh-&‘)’ x+ (As: iz) x+ (At, iz) dT, 0 <r-c a (3.8) 
0 

For certain values of the angle y the kernels (3.6) and (3.8) can be expressed interms 
of some known functions. In particular, for the kernel (3.6) this is true for all y = S”IZ, 
y1 = 1, 2, . . . . For example, 

y = $I, k’ fs, f) = 0 (3.9) 
y = n/2, K (s, 1) =z K, (A (s i_ 1)) + K1 (h (s + f)) 

7 - rc/3, K (s, t> == 

T/z&o (h 1/s2 + t2 + st) + 
etc. 

vy._i;:‘2 & (h v-se -t t2 + 4 
/ 

For the kernel (3.8) analogous results are obtained far y z n/Zn, n .= 1, 2, . . . 

y = n/2, K (s, 1) = Ko (k (s + 1)) + Kl (h (s -l- t)) (3.10) 

r= 5d / 4, K (s, C) = 1/z K, (h r/sz $- P) + 

v zQ + ff R, (h j.0 + P) - K@ (h (s + t)) - K, (2% (s + t)) 
T/Fp- 

etc. 
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Let us now apply to the integral equations (3.5) and (3.7) an iteration process which 
converges rapidly when thevalues of the parameter h a are not too small. In particu- 
lar, for n, / 2 < y 4 71 the formulas (3.6) and (3.8) yield the following estimates (*): 

K2 ($9 t> < [K, (2hs) + K1(2hs)l [K, (2U) + K, (2?d)] (3.11) 

II K ($7 0 II G + & (zW 

and the application of the general theory of integral equations leads to the following 

criterion of convergence of the iteration process: 

& (2 1 a> < n (3.12) 

The last inequality holds when A a > 0,025 and the rate of convergence of the itera- 

tion process increases with increasing h a . 

When the solutions of (3.5) and (3.7) have been constructed, the solutions of the corre- 

sponding dual equations (1.1) are given by the formula (3,1). 

4. Solution of the dual lntsgrrl equation8 (1.2). In the present 
case we can restrict ourselves to investigating the equations in which f (r) = O..The 

general case can be reduced to this particular case using the substitution 

The right-hand sides of the transformed equations, on the basis of (2,6), are, respectively, 
m 

Thus, the problem reduces to the solution of (1.2) with f (r) = 0. The soiution of these 

equations is sought in the form 

M (r) = 2 I= _ sh m c 4, (t) x- (At, ix) dt 
z VTJt 

(4.9 
; 

where rp (t) is continuous together with its first derivative on the interval [a, oo) and 
tends to zero for t -+ 30. 

Using Eq. (2.3) we find, that the homogeneous equation (1.2) (f (r) = 0) is satisfied 
identically, 

*) In deriving the i~q~lities (3.11) we utilize the value of the integral (3.6) for 1 = 
x/L and the relation R, (5) f R, (5). 
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Then, integrating by parts and substituting into the inhomogeneous equation, we obtain 

- f$!$ q (u) ( sh nT 0 (7) ‘i X- (AS, in) dsKi, (hr) do - 

L&t,:iii 3c- (As, in) (EsKi, (hr) & = rg (r) 

n ” 

(4.2) 

Subsequent calculations depend on the form of the function o (7). If o (T) = ‘G th y”, 
then 

and Eq. (4.2) can be written, using (2.4), in the form 

cp V) 
e-A(t-r) 2 Jm 
r- (4.3) 

? A (t - r.) 
dt := e-).rg (r) + _ e 

x .I/n 
T (4 a.9 x 

7’ a 
co 

c 
,r ch (n - r) z K, (hr) 

chrr 
7c(hs, iz) r dz==e-XrF(r), a<r<m 

. 
0 

Integrating over the limits (r, W) and using the Abel inversion formulas, we obtain 

T/LA* ’ emhrg (r) dr -I 

T VI = -y- s t I/r--t (4.4) 

Computing the inner integral according to the formula 

Zeht s T e-ArKir w & = x_ (ht iz) 

Jf/2nht rI/Z 
7 

following from (2.3). we arrive at the integral Fredholm equation of the second kind 

v/Xeht m ewhr g (r) 
q)(t) := 7 c dr + f r cp (s) K (s, t) ds, a<t<m (4.5) 

;T/r--t u 

x- (hs, iz) x- (At, iz) dz, o<r<,-n (4.6) 

0 

In a similar manner we obtain. for o (T) = z cth yz 

l/Xeht m Chrg (r) 
cp (9 = 7 c dr - f f cp (s) K (s, t) ds, 

p7z n 
a < t < m (4.7) 

m 

K(s, t) = $5 sh(zhy17)t x’-(As, it)%-(ht, iz)dT, o<T< n (4.8) 
0 

The integral equations obtained are of the same type as those in Sect. 3 and their solu- 
tion can be obtained by iteration. For certain values of y the kernels of the above equa- 
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tions can be expressed in terms of the known functions. Thus, e. g. the kernel of (4.5) 
with y = n/2 71 (n = 1, 2 , . . .) and the kernel of (4.7) with y = n/n (n _ 1, 
2, . ..) can be expressed in a close form using the Macdonald functions. 

The method of reducing the dual integral equations (1.1) and (1.2) presented in this 

paper can be extended to the weight functions o (T) of a more general type, whose asym- 

ptotic behavior, when ‘G -+ * , is described by the formulas 

0 (z) zzthnt, 0,) (z) z r cth fit’d 

5. Applicatfon to a boundary value problem. As anexample,we 
consider the problem of constructing a function u = u (r, cp, z) harmonic in the region 

O<r<m, -r<‘P<vO<z<l and satisfying the mixed boundary con- 
ditions 

Solution of this problem is given by the formula 

TL=l 

where M, (T) satisfies (1.1) with i (T) = 7 th ye, h = n n/l, f(r) = fn (r), 
where fn (r) are the coefficients of the Fourier expansion of the function f (r, z) , and 

g (r) = 0. 
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The propagation of acceleration waves in an anisotropic thermoelastic medium 
is studied. It is shown that taking account of the finiteness of the heat distribu- 
tion velocity results in the appearance of four kinds of accelaration waves, whose 
velocities and damping coefficients depend in an essential way on the direction 

of wave surface propagation. A comparison between the velocities and damping 
coefficients of plane acceleration waves in a zinc crystal, obtained with and with- 

out the finiteness of the heat propagation velocity taken into account, is presented. 
The papers [ 1, 21 are devoted to the influence of the coupling of the strain 

and temperature fields on the nature of wave propagation in a homogeneous iso- 

tropic body in the case of an. infinite heat distribution velocity. A number of 
features due to coupling of the fields is obtained therein, and it is shown in par- 

ticular that weak and strong discontinuities damp out, and the order of damping 

is determined by an exponential factor. 
Taking account of finiteness of the heat distribution velocity results in the 

appearance of two kinds of longitudinal waves whose propagation velocities de- 

pend in an essential manner on the velocity of the heat perturbation [3, 41. 

1. Let us write down the system of equations governing the dynamical behavior of a 
thermoelastic anisouopic medium in which the heat is propagated at a finite velocity 

qi,i + c,0’ + T&jeij = 0 (1-l) 
rqj + qj = - K8,i (1.2) 

Oij,j = PUi” (1.3) 
&ij = ‘12 (“i,j + %,i) (i-4) 
Oij =ZI Cijtl&k[ - Pij0 (1.5) 

Here qj are the heat flux vector components, 0 = 2’ - T, is the body temperature, 
T, is the body temperature in the natural state, cE is the specific heat for constant strain, 


